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1. Introduction

In the last lecture, we defined the Berkovich spaces and the psh functions. As in the complex
pluripotential theory, one wishes to define the Monge–Ampère operator and study the Monge–
Ampère equations. Unfortunately, we did not develop the theory of differential forms and
currents yet, so it is impossible to do so by the usual formulae (for the time being). Today I will
talk about an indirect method of defining the Monge–Ampère operator.

In complex geometry, we know that a primitive of the Monge–Ampère operator is given by
the Monge–Ampère energy (or Aubin–Yau energy if you prefer). We shall define the energy first
and then deduce the Monge–Ampère operator as an application.

2. Energy pairing in the piecewise linear case

As before we fix X an irreducible projective variety of dimension n over C, θ a pseudo-effective
class in N1(X)R.

We begin with the case of piecewise linear functions φ ∈ PL(Xan)R. Recall that any such
function has the form φD, where D is a vertical R-Cartier divisor on a test configuration X of
X. We may assume that X dominates the trivial test configuration X × A1. In this case, θ can
be pulled-back to a cohomology class θX on X . We say φ is θ-psh if θX + D is nef over A1.

We can also compactify the test configuration by gluing the trivial product X ×
(
P1 \ {0}

)
→

P1 \ {0}. We therefore obtain a morphism X → P1. The class θX + D extends naturally to a
P1-nef class θX + D.

Exercise 2.1. Verify that this condition does not depend on the choices we made.

Exercise 2.2. Verify that this definition is compatible with the general definition given in the
last lecture.

We shall define a polarized version of the energy pairing. Suppose that θ0, . . . , θn are pseudo-
effective classes in N1(X)R and φ0, . . . , φn ∈ PL(Xan)R. As above, represent each of them as
vertical divisors D0, . . . , Dn on the same test configuration X . We define their energy pairing as
the intersection number

(θ0, φ0) · · · · · (θn, φn) :=
(
θX + D0, . . . , θX + Dn

)
∈ R.

Next we proceed to define the energy pairing of general θ-psh functions. The approach of
Boucksom–Jonsson only works when the classes are ample of nef. We will content ourselves to
this case.
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Theorem 2.3. Assume that ω0, . . . , ωn are Kähler classes in N1(X)R. Then there is a unique
map

n∏
i=0

PSHNA(X, ωi) → [−∞, ∞)

satisfying the following properties:
(1) this pairing extends the pairing recalled above;
(2) the pairing is usc;
(3) the pairing is increasing in each variable.

We refer to [
BJ18b
BJ21, Theorem 7.1] for the details.

Definition 2.4. Assume that ω is a Kähler class in N1(X)R. Then the Monge–Ampère energy
E : PSHNA(X, ω) → [−∞, ∞) is defined as

E(φ) := 1
n + 1(ω, φ) · · · · · (ω, φ).

The set E1,NA(X, ω) is the subset of PSHNA(X, ω) consisting of φ such that E(φ) > −∞.

Our definition of E differs from Boucksom–Jonsson’s convention by a constant. At this stage,
one could easily verify that E satisfies the familiar properties of the Monge–Ampère energy as
in the complex setting.

The energy is extended in Boucksom–Jonsson’s paper to general pseudoeffective classes θi

with a somewhat subtle condition on φi. We wish to avoid the extra technical burden and
restrict to the simple case of ample classes in the these lectures.

After defining the Monge–Ampère energy, the definition of the Monge–Ampère measure is
immediate. We still work out a slightly more general version.

Theorem 2.5. Assume that ω1, . . . , ωn are Kähler classes in N1(X)R and φi ∈ PSHNA(X, ωi).
We define (ω1 + ddcφ1) ∧ · · · ∧ (ωn + ddcφn) as the unique Radon measure on Xan satisfying the
following: given any φ ∈ PL(Xan)R, we have∫

Xan
φ (ω1 + ddcφ1) ∧ · · · ∧ (ωn + ddcφn) = (0, φ) · (ω1, φ1) · · · · · (ωn, φn).

This theorem is a simple consequence of the Riesz–Markov–Kakutani representation theorem.
We leave its proof as an exercise. Of course, you need to develop a few basic properties of the
energy pairing by yourself.

Let us consider a very particular case:

Example 2.6. Assume that ω = c1(L) for an ample line bundle L and φ ∈ PSHNA(X, ω) is
piecewise linear and represented by a vertical Q-divisor D on some test configuration X . In this
case, the Monge–Ampère measure is given by

(ω + ddcφ)n =
∑
E

cE δvE ,

where E runs over all irreducible components of X0 and

cE = ordE(X0) · (ωX + D)|nE .

Here vE denotes the unique valuation of C(X) whose Gauss extension is given by (ordE X0)−1 ordE.
This resembles the original definition of the Chambert-Loir measure.

Exercise 2.7. Prove the above assertions.

One could develop the general theory in parallel with its complex counterpart, as done in
Boucksom–Jonsson’s paper.
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3. The envelope

Let us make a pose to study some different object: the envelope operator. This is required
when solving the Monge–Ampère equation.

We will fix an ample class ω ∈ N1(X)R. Given a function f : Xan → R its envelope is defined
to be the function Pω(f) : Xan → [−∞, ∞] given by

Pω(f) := sup {u ∈ PSHan(X, ω) : u ≤ f} .

The following envelope conjecture lies at the heart of the non-Archimedean pluripotential theory.

Conjecture 3.1. Given any f ∈ C0(Xan)1, Pω(f) is also continuous.

This conjecture concerns not only with the trivially valued case, as we shall see in the last
lecture.

Why is this conjecture important? We give a list of properties equivalent to this condition.
(1) For any bounded above (non-empty) family of ω-psh functions φi, the usc regularized

sup is still ω-psh;
(2) The space E1,NA(X, ω) is complete with respect to the d1-metric (we did not introduce

it yet);
(3) The space PSHNA(X, ω) is invariant under blowing-up X;
(4) There is a canonical isomorphism between PSHNA(X, ω) and the corresponding space

defined in [
DXZ23
DXZ23].

Part (1) of this conjecture makes sense for more general pseudo-effective class as well. This is
the envelope conjecture for general pseudo-effective class.

The conjecture is known when X is smooth. When X is only unibranch, it is widely open.
This also explains why one needs to assume the smoothness in [

BBJ21
BBJ21].

4. Differentiablity of the volume

The idea of solving the non-Archimedean Calabi–Yau theorem is similar to the complex case
[
BBGZ13
BBGZ13]. The variational approach is preferable because it does not depend on local estimates.
Recall that in the non-Archimedean world, psh functions are not defined locally!

The key to the variational approach is the differentiability of the energy, which unfortunately
depends on the envelope conjecture.

Theorem 4.1. Assume that the envelope conjecture holds for an ample class ω ∈ N1(X)R, then
for any φ ∈ E1,NA(X, ω) and any f ∈ C0(Xan),

d
dt

∣∣∣∣
t=0

E(P (φ + tf)) =
∫

Xan
f (ω + ddcφ)n.

The envelope P is defined in a way similar to the continuous case. We will talk about the
more general result of Boucksom–Gubler–Martin in the last lecture.

The rest of the story is completely standard, as in the Archimedean case. We want to solve
the Monge–Ampère equation (ω + ddcφ)n = µ for a Radon measure µ with volume

∫
X ωn on

Xan. We view this problem as a variational problem: finding the maximizer of the functional

φ 7→ E(φ) −
∫

Xan
φ µ

on E1,NA(X, ω).

Theorem 4.2. As long as this functional is bounded from above (in other words, µ has finite
energy), there is always a unique (up to constant) solution φ ∈ E1,NA(X, ω) to the Monge–Ampère
equation

(ω + ddcφ)n = µ.

This approach was due to [
BFJ15
BFJ15].

1There is an obvious typo in [
BJ18b
BJ21, Lemma 5.17]
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