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1. Motivations

This is the first of a series of lectures notes for my course at USTC. In this series of notes, I
will try to explain the idea and main techniques in the non-Archimedean pluripotential theory
à la Boucksom–Jonsson to mathematicians working on complex geometry. Therefore, we have
to assume some familiarity with complex manifolds and the usual pluripotential theory. The
excellent book [

GZ17
GZ17] is sufficient for most parts of these notes.

In complex geometry, people study complex manifolds, which are concrete objects in the sense
that one can imagine them: just glue unit balls in Cn together. Put things more abstractly, one
can begin the study of complex geometry from the valued field (C, | • |), where | • | : C → [0, ∞)
is the usual absolute value. There is a canonical way to generate the unit balls in Cn from the
data (C, | • |) and hence generate all complex manifolds by gluing. In other words, complex
geometry is a geometry relative to (C, | • |).

In these notes, I will talk about some less concrete and less familiar objects: spaces over
a non-Archimedean valued field (k, | • |). As three examples to keep in mind, one could take
k = Qp and | • | as the p-adic valuation; or one could take k = C((t)) and | • | as the t-adic
valuation; or one could take k to be any field while | • | is the trivial valuation. In these cases,
one could similarly develop a full theory of geometry relative to these data. But why bother?

This question can be answered from different angles. I will talk about a few of my favorite
motivations.

First of all, a motivation from geometric representation theory. In the case of Qp, there is a
famous object called Drinfeld’s upper half plane Ω of dimension d, which can be constructed using
non-Archimedean geometry. It can be regarded as an analytic space relative to Qp. The general
framework established by Berkovich allows us to talk about étale cohomologies of the local
systems µn on Ω. These cohomology groups are naturally endowed with actions of GL(Qp, d + 1).
This point of view is crucial in the local Langlands program.

Next, let us talk about a motivation in complex geometry. Let us consider a nice family
of hyperbolic Riemann surfaces over the punctured disk ∆∗. Here nice means admitting a
semistable model if this makes sense to you. On each fiber, there is a natural measure called
the Bergman measure: take an orthonormal basis s1, . . . , sg ∈ H0(X, ωXt) with respect to the
obvious inner product, the Bergman measure is just βt := 2−1 ∑g

j=1 isj ∧ sj . It is very natural
to wonder how this family of Bergman measures degenerate as t → 0. It turns out that the
answer is given by non-Archimedean geometry. Sanal Shivaprasad [

Shi24
Shi24] proved that if we

put a non-Archimedean fiber in the middle, then βt converges weakly to a non-Archimedean
canonical measure, Zhang’s measure.

One can summarize the idea as that non-Archimedean objects characterize the degeneration
of complex families. This is the point of view I want to emphasize in this series of lectures,
addressing to complex geometriers.
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As a continuation of this idea, let me explain a third motivation. We will consider the
degeneration problem of geodesic rays of Kähler potentials. We will fix a projective manifolds
X and a Hodge form ω. It is well-known that the space of regular ω-psh functions has an
intrinsic metric geometry. In particular, one can talk about geodesic rays in this space. Studying
asymptotics of functionals along these rays is one of the central theme in the variational approach
to the Yau–Tian–Donaldson conjecture.

Let us consider such a geodesic ray ℓt. How do we understand the behaviour as t → ∞? It is
almost always true that ℓt(x) → −∞ for certain x ∈ X. But this is not enough for understanding
the degeneration. One needs to know the speed of divergence as well in order to get a reasonable
understanding of the degeneration.

Here the non-Archimedean picture comes into play again. In this case, the non-Archimedean
space consists of a compactification of objects like t ordE , where t ∈ Q>0 while E is a prime
divisor over X. One can view t ordE as a valuation of the field C(X) given by t times the order
of vanishing along E. One can generate a coupling between the ray ℓ and t ordE , giving the
speed of degeneration of ℓ along E. It turns out that if ℓ is decent in a specific sense (maximal
if you are familiar with [

BBJ21
BBJ21]), then ℓ is completely determined by these couplings.

In fact, this approach gives us more: any ray ℓ induces a non-Archimedean plurisubharmonic
function ℓan. One main result proved in [

BBJ21
BBJ21] is that decent rays are in bijection with

certain non-Archimedean plurisubharmonic functions. This gives us the motivation to study the
non-Archimedean pluripotential theory.

The three examples correspond to the three different choices of the valued field which we
talked about earlier.

I hope that now you have enough motivations to begin to learn the non-Archimedean geometry.

2. Non-Archimedean pluripotential theory

In this series of lectures, I will address the problem of non-Archimedean pluripotential theory,
namely the study of plurisubharmonic functions on non-Archimedean spaces.

Since this is a course addressing to complex geometriers, I will not talk about the traditional
approach to the non-Archimedean geometry. Rather, I will content myself to the ad hoc approach
as in Boucksom–Jonsson’s paper.

Now it is a good point to talk about different theories of non-Archimedean geometry. So far,
there are three mainstream and well-established approaches to the non-Archimedean geometry:
Tate’s theory of rigid spaces, Berkovich’s theory of Berkovich spaces and Huber’s theory of
adic spaces. Instead of getting the readers to the complicated comparison, it suffices for us to
mention two features that singles out the Berkovich theory: first of all, Berkovich spaces have
the best topological properties; secondly, Berkovich theory also makes sense when the base field
is trivially valued. Both features will play important roles in the sequel.

Let us make a pause and start with the simplest example of a Berkovich space. The
analytification of P1 over the trivially valued field C. Geometrically, it is mostly intuitive to
draw the picture first as in Fig. 1. It might seem striking and counter-intuitive to call such a
bizarre object P1. But you will get used to this picture when you get more familiar with the
non-Archimedean geometry.

This picture itself requires some further explanation. There is a center in the graph, called the
Gauss point or the trivial valuation, denoted by vtriv. There are infinitely many legs attached to
this special point. The legs are labeled by points in P1(C). So the whole picture can be viewed
as a tree with infinitely many legs. The topology is given by the pro-tree topology. In more
concrete terms, a base of neighbourhoods around the Gauss point is given by the following sets:
take a open subset on each leg containing the Gauss point such that only finitely many among
them are not equal to the whole leg, then take their union.

This kind of picture only works for trivially valued fields. In general, the Berkovich projective
line exhibits much more complicated behaviours, which depend on the field a lot. I will come
back to this point at the end of the lectures.
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Figure 1. Berkovich P1 over a trivially valued field

fig:BerP1

In this special picture, we observe that each leg is homeomorphic to [0, ∞] in the obvious
way. Here the Gauss point corresponds to the 0-end. There is therefore a scaling action on the
pro-tree: R>0 acts on each leg by multiplication. The readers should verify that the scaling is
continuous. The fixed points of the scaling action are exactly the Gauss point together with
the outer end points of the legs. Again, the existence of the scaling is a unique feature of the
trivially valued case.

In the first few lectures, I will only focus on the trivially valued case. This is due to the fact
that the general situation, despite its similarity with the trivially valued case, necessities much
deeper understandings of the non-Archimedean geometry. I will try to come back to the general
situation at the last lecture if we have time.

Now we have a picture of a very simple Berkovich space in mind, I could begin to explain the
different approaches to the pluripotential theory on these spaces. So far, there are four different
approaches to the pluripotential theory on Berkovich spaces.

(1) The approach of Chambert-Loir–Ducros. This approach works for arbitrary valued
fields. In this approach, they first developed the theory of different forms and currents
on the Berkovich spaces. This is based on local tropicalizations of Berkovich spaces.
Write our Berkovich space as X. Roughly speaking, locally we could find morphisms
X → T , where T is a split (analytic) torus. The tropicalization of T is a canonical
map T → Hom(X∗(T ),Rdim T

>0 ) ∼= Rdim T . This allows us to define by composition a
continuous map X → Rn. The image of this map is a polytope. One can define the
differential (pre-)forms on X by pulling back the Lagenberg forms on polytopes. Of
course, allowing T or the local chart of X to vary, we end up with a huge number of
forms. A standard shefification procedure allows us to define the differential forms. Then
one could easily develop the theory of currents etc. The plurisuhbarmonic functions are
defined using the usual curvature condition. As in the usual pluripotential theory, a
singular plurisubharmonic is not simply determined by the curvature condition ddcu ≥ 0,
it requires some extra assumptions. In the non-Archimedean theory, unfortunately, this
approach only works for certain regular plurisubharmonic functions.

The details of this approach are presented in the long article [
CLD12
CLD12]. Ducros

mentioned that they are writing a book to expand this paper. We remind the serious
readers that there is a known mistake in the original paper [

CLD12
CLD12] as pointed out by

Gubler.
Their approach is followed mainly by the Regensburg school.

(2) The most well-known non-Archimedean theory to the complex geometriers is probably
the Boucksom–Jonsson theory. This theory also works for arbitrary valued fields, but
certain key properties are missing for general fields.

This approach is motivated by S. Zhang’s approach to semi-positive metrics. One
begins with a polarized complex variety (X, L). One first consider certain semipositive
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models, or in the trivially valued case, test configurations satisfying some positivity
assumption. It is a well-known idea in non-Archimedean due to Raynaud that models give
a complete description of the non-Archimedean geometry. In our situation, this idea lead
to the notion of model metrics induced by semipositive models. One should regard these
model metrics as prototypes of non-Archimedean plurisubharmonic functions. These
model metrics are necessarily somewhat regular. In the usual complex pluripotential
theory, a general plurisubharmonic metric can be (at least locally) written as decreasing
sequences of regular plurisubharmonic metrics. In the non-Archimedean theory, we take
this as the definition of general plurisubharmonic metrics.

It turns out that the plurisubharmonic functions defined in this way are well-behaved.
But there are a few twists: there is a key conjecture about these metrics known as
the envelope conjecture or the continuity of envelopes. This conjecture and its various
consequences are at the heart of the pluripotential theory. The conjecture is solved only
in a few cases. For example, when X is smooth and the base field is trivially valued.
This also explains why we choose to present this case at first.

But even if one solves the envelope conjecture in general, Boucksom–Jonsson’s theory is
still not the ideal theory. In fact, it is desirable to have a local theory of plurisubharmonic
metrics, but Boucksom–Jonsson’s theory is global in nature. The same problem persists
for the next two theories.

In the next two theories, we only consider the trivially valued base field C.
(3) The third approach is the more recent one developed in my joint paper with Darvas

and K. Zhang. It has roots in a series of deep works in complex pluripotential theory
in the last decade. In this theory, one defines the non-Archimedean plurisubharmonic
functions without referring to the non-Archimedean spaces. In fact, in my series of
joint works with Darvas, we established a theory of singularities in complex geometry,
which turns out to characterize the non-Archimedean plurisubharmonic functions. This
theory requires some deep knowledge of the complex pluripotential theory. Compared
to Boucksom–Jonsson’s theory, it has two advantages: it works for general compact
unibranch Kähler spaces as well; the envelope conjecture trivially holds in our theory.
But it has an obvious drawback, due to the lack of a Berkovich analytification, it is not
possible to talk about basic objects like the Monge–Ampère operators. But this difficulty
is solved more recently by the fourth approach.

(4) The last approach is being developed in the thesis of Pietro Piccione, a student of
Boucksom. In his thesis, Piccione introduces a Berkovich space associated with a compact
Kähler manifold. Then the pluripotential theory can be developed correspondingly. Since
the preprint has not been made public yet, I will not talk about this approach in these
lectures.

In these lectures, we will focus on the second approach. The main reference will be [
BJtrivial
BJ22]. I

will give a few lectures about singularities in complex pluripotential theory in Zhejiang university
shortly. The details about the third approach will be presented at the end of those lectures.

3. The pluripotential theory on P1

I will begin to talk about the general framework of Boucksom–Jonsson’s theory from next
time on.

In the remaining part of this lecture, I will explain the potential theory on the trivially
valued Berkovich P1 with respect to the line bundle L = O(1). The non-trivially valued case is
developed in detail in the thesis of Thuillier [

Thu05
Thu05] and in the book of Baker–Rumely [

BR10
BR10].

I will content myself the the trivially valued field C.
We will write the non-Archimedean P1 as P1,an. We will first give a more precise description

of Fig. 1. We decompose P1,an as two parts:

P1,an = P1,val ⨿
∐

x∈P1(C)
{vx,triv},
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where P1,val corresponds to the pro-tree with all end points at the ∞-side removed. For each
x ∈ P1(C), the notation vx,triv refers to the removed end point on the leg labeled by x. For the
reason that will be clear in the next lecture, we will write the singleton {vx,triv} as xval. So the
previous decomposition can be rewritten as

P1,an = P1,val ⨿
∐

x∈P1(C)
xval.

This equation exhibits a hierarchy of the Berkovich P1, a structure which persists in higher
dimensions.

The points in P1,val can be regarded as valuations of the function field C(X). To describe
them, let us take x ∈ P1. Then we have a valuation ordx : C(X)× → Z given by the order of
vanishing along x. For each t ∈ [0, ∞), we have a valuation t ordx : C(X)× → R. The leg labeled
by x can be identified with [0, ∞] as we explained earlier. The [0, ∞) part can therefore be
interpreted as t ordx. The t = 0 end can be described as the valuation sending each non-zero
element in the function field to 0. This is the so-called trivial valuation vtriv.

The ∞ ends, by contrast, are not valuations of the field C(X). They should be regarded as
valuations of the field C(x) = C instead. We will explain this point of view in the next lecture.
Now we have a pretty complete description of the space P1,an, let us develop the potential theory
on it.
Definition 3.1. A function g : [0, ∞] → R ∪ {−∞} is Q-piecewise linear if there exist rational
points 0 = t0 < t1 < t2 < · · · < tN such that g(ti) ∈ Q for each i, g is linear on each interval
[ti, ti+1] (i = 0, . . . , N − 1) and g is linear on [tN , ∞] with rational slope.

In particular, if g takes value in R, then g is necessarily constant on [tN , ∞].
Definition 3.2. A piecewise linear function on P1,an is a continuous map f : P1,an → R satisfying
the following properties:

(1) f is constant on all but finitely many legs;
(2) On each leg, f restricts to a Q-piecewise linear g : [0, ∞] → R.

We write the set of piecewise linear functions on P1,an as PL(P1,an).
We denote by PL+(P1,an) the subset of PL(P1,an) consisting of functions which are furthermore

convex on each leg.
Definition 3.3. A function in Hgf

Q (O(1)) is a function f : P1,an → R ∪ {−∞} satisfying the
following properties:

(1) f is constant on all but finitely many legs;
(2) On each leg, f restricts to a Q-piecewise linear g : [0, ∞] → R ∪ {−∞};
(3) f is convex on each leg;
(4) the sum of the slopes at vtriv is no less than −1.

A function in Hgf
Q (O(1)) taking value in R is necessarily a piecewise linear function.

A subharmonic function is by definition, the limit of a decreasing net of functions in Hgf
Q (O(1)).

In our case, it admits a more concrete description.
Definition 3.4. A subharmonic metric on O(1)an is a function f : P1,an → R∪ {−∞} satisfying
the following properties:

(1) f is constant on all but finitely many legs;
(2) f is convex on each leg;
(3) the sum of the slopes at vtriv is no less than −1.

The set of subharmonic metrics on O(1)an is denoted by SHNA(P1, O(1)).
Given f ∈ SHNA(P1, O(1)), we define its Monge–Ampère measure as the measure on P1,an

consisting of the sum of two parts: the first part is the Laplacian of f restricted to the interior
of each leg. The second part is the Dirac mass at vtriv with coefficient given by 1 plus the sum
of the slopes at vtriv.

As well will see, the description of P1 and the description of subharmonic functions both have
generalizations in higher dimensions.
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