报告人:张俊升(美国国家数学科学研究所)
时间:2024年12月17日 09:00-10:00
地点:腾讯会议:823 182 583,无需密码
We prove that every Kähler-Ricci shrinker (not necessarily compact) admits a quasi-projective variety structure. The proof uses Kähler reduction and Birkar's boundedness result for Fano varieties. Moreover we propose several conjectures for Kähler-Ricci shrinkers, which unifies the well-developed theories for Kähler-Einstein metrics and Calabi-Yau cones.