12-06【姚成建】Gravitating Vortices with positive curvature on Riemann sphere

发布时间:2019-11-19来源:几何与物理研究中心中文网页浏览次数:42

报告人: 姚成建(上海科技大学)

时间:2019年12月6日,周五,16:00-17:30

地点:五教5107

  


Gravitating vortex equation is a system of PDEs coupling constant scalar curvature problem and Hermitian-Yang-Mills problem on a line bundle on a Riemann surface in the presence of a Higgs field. We prove that gravitating vortex equation on P^1 with positive curvature is solvable if and only if the divisor, i.e. the zeros of the Higgs field, is polystable under the canonical SL(2,C)-action. Our method uses a continuity path starting from Yisong Yang's solution with zero curvature (in relation to some gravitating problem in theoretical physics) and deforming the coupling constant towards 0. This is a joint work with Mario Garcia-Fernandez and Vamsi Pingali.