报告人:张俊升(纽约大学柯朗数学科学研究所)
时间:2026年1月13日10:30-11:30
地点:物质科研楼C1124
We establish a uniform lower bound for the diameter along the Kähler–Ricci flow up to the first finite-time singularity for non-Fano initial data. The argument is based on a weak transcendental base-point-freeness result on compact Kähler manifolds and a generalized Schwarz-type lemma.