报告人:魏春晖(墨尔本大学)
时间:2026年1月16日10:00-11:00
地点:五教5102
The SU(n+1) Toda system is a classic integrable Hamiltonian system in the fields of mathematical physics and nonlinear partial differential equations, which is equivalent to a system of curvature-type equations on a Riemann surface. We propose a natural yet precise approach to generating solutions for the SU(n+1) Toda system on Riemann surfaces via spherical metrics.