报告人:聂鑫(东南大学)
时间:2022年7月7、8、19、20日 09: 00-10: 30
地点:五教5106
1. Holomorphic vector bundles and Higgs bundle
• Symplectic reduction and its Kähler/hyperkähler versions
• Relation with G.I.T. (Kempf-Ness theorem)
• Holomorphic vector bundles, Atiyah-Bott's reduction and Narasimhan-Seshadri theorem
• Higgs bundles, Hitchin's reduction and Hitchin-Kobayashi correspondence
2. G-Higgs bundles and surface group representations
• SL(2,R)-Hitchin component and Teichmüller theory
• SL(n,R)-Hitchin component, cyclic Higgs bundles
• Theory of semsimple Lie algebras and principal 3d subalgebras
• G-Higgs bundles for a general Lie group G
• SO(p,q)-Higgs bundles
3. Harmonic maps associated to G-Higg bundles and Labourie's conjecture
• harmonic maps, minimal surfaces and Riemannian symmetric spaces
• harmonic maps given by G-Higgs bundles
• Energy functional and Labourie's conjecture
• Strategy via Infinitesimal rigidity and the SL(3,R)-case (affine spheres)
• Cyclic surfaces (Labourie Ann.Math.2017)
4. Minimal surfaces in pseudo-hyperbolic spaces
• pseudo-hyperbolic spaces
• second variation formula and maximal surfaces
• Relation with Teichmüller theory (Bonsante-Schlenker Invent.Math.2010)
• Labourie's conjecture for SO(2,n) (Collier-Tholozan-Toulisse Duke.Math.J. 2019)
• A-surfaces and their infinitesimal rigidity (speaker arXiv:2206.13357)
More details please visit: http://staff.ustc.edu.cn/~nanbei0104/